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infeasible. We approach the prob_lem_ by pooling qbservations from stations > T O station with a common bandwidth 1.0. The parameter estsnate similar
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For stations, IetXégk) be the data in fold andXég_k) all the data exceptthose yond 1.0. The difference in predictive loglikelihood at bandwidth Ind a copulas and their use in frequency analysis of multivatigtrological data,
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Figure 1: Location of stations in Connecticut and their sample sizes. K — ) such that the cross-validation score is close enough to the asymptata wit ; ndaraiu ( ), Trivar PN
L . o . CVy(h) =Y LBy "V (h); X&), 5 certain tolerance. The chosen bandwidth is 1.0. Kao, S. C., and R. S. Govindaraju (2008), Trivariate staastmalysis o
e Raw precipitation data of every 15 minutes for 16 stations in Connecticut s(h) ]; (Os " (h): s ™) (%) extreme rainfall events via the plackett family of copul&ter Resources
from the NCDC. o _ Research44(2).
. . . . . The overall cross-validation score of bandwidtrs then
e At each station, rainfall event records are obtained with the ranvdaime, Yan, J., and I. Kojadinovic (2008, 0pul a: Multivariate dependence with

duration and peak 15-minute intensity. S
e The annual extreme rainfall event at a given station in a given yeapsern CV(h) = Zl CVs(h). (6)
S=

copulas r package version 0.8-0.

to be the rainfall event which possesses the largest joint cumulative-proba

bility of volume and peak intensity.

We choosé: that maximize<’V(h) because it leads to a model with the high-
est predictive capabillity.



